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Review Summary

Inequalities related to D and /

1. D(p|lq) > 0 with equality iff p(x) = q(x), for all x € X
(information inequality).

2. 1(X;Y) = D(p(x,y)llp(x)p(y)) > 0, with equality iff
p(x,y) = p(x)p(y) (i.e., X and Y are independent).

3. If |[X| = m, and u is the uniform distribution over X, then
D(pllu) = log m — H(p).

Jensen’s Inequality

If f is a convex function, then E[f(X)] > f(E[X]).

Data-processing inequality
If X — Y — Z forms a Markov chain, then /(X;Y) > I(X; Z).
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Fano's inequality

Problem 2.5 (Zero conditional entropy)

Show that if H(X|Y) =0, then X is a function of Y, i.e., for all y
with p(y) > 0, there is only one possible value of x with
p(x,y) > 0.

Proof.

Assume that there exists an y, say yp and two different values of x, say x; and x» such
that p(yo,x1) > 0 and p(yo,x2) > 0. Then p(y0) > p(yo0,x1) + p(y0,x2) > 0, and
p(x1lyo) and p(x2|yo) are not equal to 0 or 1. Thus,

HXIY) == p(y) > p(xly)log p(x|y)
y X

> p(y0) (—p (x1lyo) log p (x1]y0) — p (x2|y0) log p (x2|y0))

>0
since —tlogt > 0 for 0 < t < 1, and is strictly positive for t # 0,1, which is a
contradiction to H(X|Y) = 0. O

<
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Fano's inequality

e If H(X|Y) =0, X is a function of Y. we can estimate X
from Y with zero probability of error.

@ When H(X|Y) is not zero, our estimate X may be wrong.
Define

P. = Pr[X # X],

as the detection error probability, we want to connect P, with
H(X|Y).
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Fano's inequality

Theorem 2.10.1

For any estimator X such that X — Y — X , with
P. = Pr{X # X}, we have

H (Pe) + Pelog(|X| — 1) > H(X|X) > H(X]Y).
This inequality can be weakened to
1+ P.log(|X| —1) > H(X|Y)

or
H(X|Y) -1
€~ loglX|—1"
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Fano's inequality

Theorem 2.10.1

For any estimator X such that X — Y — X , with Pe = Pr{X # )A(} we
have

H (Pe) + Pelog(|X| — 1) > H(X|X) > H(X|Y).

Proof.

Define an error random variable as
E= {

| \

1 ifX#X,
0 ifX=X.
Using the chain rule for entropies to expand H(E, X|X) in two different ways, we have
H(E, X|X) = H(X|X) + H(E|X, X) = H(E|X)+ H(X|E, X)
N—— N —
=0 <H(Pe)  <Pelog(]X]|—1)

Since conditioning reduces entropy, H(E|X) < H(E) = H(Pe). Since E is a function of X and X, the conditional
entropy H(E|X, X) is equal to 0. We now look at H(X|E, X). By the equation
HIXIY) = 32, pOIH(XIY = y), we have
H(X|E,X) = > {Pr[X =&, E = 0JH(X|X = %, E = 0)
xex
+Pr[X =&, E = 1JH(X|X = %, E = 1)}.

v
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Fano's inequality

Theorem 2.10.1

For any estimator X such that X — Y — X , with P. = Pr{X # X}, we
have o
H(P.) 4 Pelog(|X] — 1) > H(X|X) > H(X|Y).

v

H(E, X|X) = H(X|X) + H(E|X, X) = H(E|X)+ H(X|E, X)
N e’ N e’ R

=0 <H(Pe)  <Pelog(|X|—1)
H(X|E, X) = > {Pr[X = %, E = 0]H(X|X = %, E = 0)

xex

+PriX =%, E=1H(X|X = &, E = 1)}.
By definition of E, X is conditionally deterministic given X = % and E = 0, then H(X\X =%E=0)=0.If
X =% and E = 1, then X must take a value in the set {x € X : x # x&} which contains |X| — 1 elements.
Then H(X|X = £, E = 1) < log(|X| — 1).

H(X|E, ) < 3 PriX = %, E = 1]log(|X| — 1)

rxeX
= Pr[E = 1] log(|X| — 1)
= Pelog(|X| — 1) O
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Fano's inequality

Theorem 2.10.1

For any estimator X such that X — Y — X , with P, = Pr{X # )A(} we
have A
H (Pe) + Pelog(|X| — 1) > H(X|X) > H(X]Y).
Proof.
H(E, X|X) = H(X|X) + H(E|X, X) = H(E|X)+ H(X|E, X)
N e N e N e’
=0 <H(Pe)  <Pe log(1X|—1)
H(X|E,X) = > {Pr[X = %, E = 0JH(X|X = %, E = 0)
reX
+Pr[X =%, E = 1JH(X|X = %, E = 1)}.
H(X|E,X) < > Pr[X =&, E = 1]log(|X| — 1)
REX
= Pr[E = 1] log(| X| — 1)
= Pe log(|X| — 1)
By the data-processing inequality, we have /(X; X) < I(X; Y) and therefore H(X|X) > H(X|Y). O
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Corollary

For any two random variables X and Y, let p = Pr(X # Y).

H(p) + plog(|X| — 1) = H(X]Y).

Let X = Y in Fano's inequality. O \
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Fano's inequality

Remark

Suppose that there is no knowledge of Y. Thus, X must be
guessed without any information. Let X € {1,2,..., m} and

p1L > p2 > - > pm. Then the best guess of X is X =1 and the
resulting probability of error is P. = 1 — p;. Fano's inquality
becomes

H(P¢) + Pelog(m — 1) > H(X).

The probability mass function

_ Pe P
(Pl’P27"‘7Pm)—(1 Peam_lu'”)m_l)

achieves this bound with equality.
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Applications of Fano's inequality

@ Prove converse in many theorems (including channel capacity)

@ Compressed sensing signal model
y=Ax+w

where A € RM*9: projection matrix for dimension reduction.
Signal x is sparse. Want to estimate x from y.
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Fano's inequality

If X and X' are i.i.d. with entropy H(X),
PriX = X'] > 2= H(X),

with equality iff X has a uniform distribution.

Let X, X’ be independent with X ~ p(x), X" ~ r(x), x,x" € X.
Then

Pr[X =X]> o—H(p)—D(p|r)
Pr[X =X] > o—H(r)=D(r||p)

Please refer to P40 of the textbook for the proof.
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Stock Market

@ Initial investment Yy, daily return ratio r;, in t-th day, your
money is

Yt’ = Yor]_' ottt

@ Now if returns ratio r; are i.i.d., with

[ 4 wp. 1)2
T0, wp. 1/2

@ So you think the expected return ratio is E[r;] = 2.

@ And then

E[Yy] = E[Yon-...-r]] = Yo(E[ri])t = Yp2t?77?
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Stock Market

@ With Yy =1, actual return Y; goes like

1 4 16 0 0

o Why?
e The 'typical’ sequences will end up with O return.
e Occasionally, we got high return.
e The expected return is increasing.
e Expectation does not show the typical feature of this random
sequence. We can turn to typical set.
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Weak Law of Large Numbers

Theorem (Weak Law of Large Numbers)
Suppose that X1, Xa, ..., X, are n independent, identically
distributed (i.i.d.) random variables, then

1 n
- > " X;i — E[X] in probability,
i=1
i.e. for every number € > 0,

1 n
lim Pr||— Xi— E[X]| < =1.
im Pr |nz (X]| <e

n—00 £
i=1
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Asymptotic Equipartition Property (AEP)

Definition (Convergence of random variables)

Given a sequence of random variables, X1, Xo, ..., we say that the

sequence X1, X, ... converges to a random variable X:
@ In probability if for every € > 0, Pr[| X, — X| > ¢] = 0
@ In mean square if E[(X, — X)?] =0

@ With probability 1 (a.k.a. almost surely) if
Pr| Ii_)m X,o=X]=1
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Asymptotic Equipartition Property (AEP)

Theorem 3.1.1 (AEP)

If X1, X2, ... areiid. ~ p(x), then

1
- log p(X1, Xa, ..., Xp) — H(X) in probability.

Proof.
Since X; are i.i.d., so are log p(X;). Hence, by the weak law of

large numbers,
——logp(Xl,Xz, =——Zlogp

— —E[log p(X)] in probability

O

v
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Typical Set

Definition

A typical set Ag”) contains all sequence realizations
(x1,x2,...,%n) € X" with

2HO) < p(xq, g, ) < 27 (HIX)=),
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Consequences of AEP

Theorem 3.1.2

o If (x1,%0,...,%n) € A then
H(X) — € < —Llog p(x1, %2, ..., xn) < H(X) +e.

° Pr[AE")] > 1 — e for n sufficiently large.

° |A£")| < 2n(H(X)+e) " where |A| denotes the cardinality of the
set A.

° |A£")] > (1 — €)2"HX)=9) for n sufficiently large.

Proof.

1. Immediate from the definition of Ag"). ]

<

The number of bits used to describe sequences in typical set is
approximately nH(X). PRy Y
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Consequences of AEP

Theorem 3.1.2

o If(x1,x2,...,%n) € AE"), then
H(X)—e< —% log p(x1,x2,...,xn) < H(X) + €.

° Pr[AE")] > 1 — € for n sufficiently large.

° \AE")y < 2n(H(X)+€)  where |A| denotes the cardinality of the
set A.

° \AE")] > (1 — €)2HX)=9) for n sufficiently large.

Proof.

2. By Theorem 3.1.1, the probability of the event (X1, X2,...,X,) € AE") tends to 1
as n — oo. Thus, for any § > 0, there exists an ng such that for all n > ng, we have

g

Setting 0 = ¢, the conclusion follows. O

1
—;Iogp(Xl,Xg,...,Xn)—H(X)’ <e} >1-4.

v
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Consequences of AEP

Theorem 3.1.2

o If (x1,%0, ..., %xn) € A", then
H(X) — € < —Llog p(x1, X2, - .., xn) < H(X) + €.

° Pr[Agn)] > 1 — € for n sufficiently large.

o |A| < 2n(H(X)+9) | where |A| denotes the cardinality of the
set A.

° \AE")] > (1 — €)2"HX)=9) for n sufficiently large.

> 1= 3 P> 3 p(x)

BEREY xeAl
>3 o= n(H(X)+€)
xe Al
_ o= n(H(X)+e)

AL
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Consequences of AEP

o If (x1,%0, ..., %xn) € A", then
H(X) — e < —Llog p(x1, X2, ..., xn) < H(X) + €

° Pr[Agn)] > 1 — € for n sufficiently large.

o |AM| < 2n(HX)+9) where |A| denotes the cardinality of the
set A.

° \Agn)’ >(1- 6)2"(H(X)*€) for n sufficiently large.

4. For sufficiently large n, Pr[Agn)] > 1—¢, so that
1—e<Pr [A(")]
< ) 27—
xEA( )
o—n(H(X)—e) AE") )

[
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Typical set diagram

This enables us to divide all sequences into two sets
@ Typical set: high probability to occur, sample entropy is close

to true entropy
so we will focus on analyzing sequences in typical set

@ Non-typical set: small probability, can ignore in general

2"1.271" elements

Non-typical set

Typical set
A : 2n(H+<) elements
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Asymptotic Equipartition Property (AEP)

Theorem 3.2.1
Let Xy, Xz, ..., X be i.i.d. random variables with distribution p(x),

and X" = X1 X5...X,,. For arbitrarily small ¢ > 0, there exists a
code that maps every realization x" = x1xp...x, of X" into one
binary string, such that the mapping is one-to-one (and therefore
invertible) and

for a sufficiently large n.
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Asymptotic Equipartition Property (AEP)

Theorem 3.2.1
E [II/(X")] < H(X) + ¢

for n sufficiently large.

Proof.
Description in typical set requires no more than n(H(X) +¢€) +1

bits (correction of 1 bit because of integrality).

)C

Description in atypical set Ag" requires no more than

nlog |X| + 1 bits.

Add another bit to indicate whether in AE") or not to get whole

description. []

v
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Asymptotic Equipartition Property (AEP)

E[=¢(X™)] < H(X) +e.
for n sufficiently large.

Proof.

Let ¢(x™) be the length of the binary description of x”. Then, Ve > 0, there exists ng
s.t. Vn > ng

E(C(X™)=>"p(x")£(x")
= > pMEE)+ DD p(x")L(x")

X"EA(:) XN EA(:)C
< Z p(x") (n(H +¢€) +2) + Z p(x") (nlog|X| +2)
xn< AN aneAn©

= PrAD(n(H + ¢) + 2) + Pr{AD |(nlog | X] + 2)
<n(H + €) + en(log | X|) + 2
=n(H+¢)

where € = e+ elog | X| + % can be made arbitrarily small by choosing n properly. m)
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Reading & Homework

Reading : 2.10 and whole Chapter 3
Homework : Problems 2.32, 3.8, 3.10
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